Advertisements
Advertisements
प्रश्न
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
उत्तर
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
= 3a(9a2 + 4b2 + c2 - 6ab + 2bc + 3a) + 2b (9a2 + 4b2 + c2 - 6ab + 2bc + 3ca) - c(9a2 + 4b2 + c2 - 6ab + 2bc + 3ca)
= 27a3 + 12ab2 + 3ac2 - 18a2b + 6abc + 9a2c + 18a2b + 8b3 + 2bc2 - 12ab2 + 4b2c + 6abc - 9a2c - 4b2c - c3 + 6abc - 2bc2 - 3ac2
= 27a3 + 8b3 - c3 + 18abc.
APPEARS IN
संबंधित प्रश्न
Write in the expanded form:
`(a + 2b + c)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate: (6 − 5xy) (6 + 5xy)
Expand the following:
`(2"a" + 1/(2"a"))^2`
If x + y = 9, xy = 20
find: x - y
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Simplify:
(4x + 5y)2 + (4x - 5y)2