Advertisements
Advertisements
प्रश्न
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
उत्तर
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
= (1 + x)(1 - x)(x2 + 1 - x)(x2 + 1 + x)
= (12 - x2)[(x2 + 1 - x)2 - x2] .....(Using a2 - b2 = (a + b)(a - b))
= (1 - x2)[x4 + 2x2 + 1 - x2]
= (1 - x2)(x4 + x2 + 1)
= 1(x4 + x2 + 1) -x2(x4 + x2 + 1)
= x4 + x2 + 1 - x6 - x4 - x2
= 1 - x6.
APPEARS IN
संबंधित प्रश्न
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Write in the expand form: `(2x - y + z)^2`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Evaluate of the following:
933 − 1073
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
Use the direct method to evaluate :
(4+5x) (4−5x)
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Factorise the following:
4x2 + 20x + 25
Expand the following:
(–x + 2y – 3z)2