Advertisements
Advertisements
प्रश्न
Evaluate of the following:
933 − 1073
उत्तर
In the given problem, we have to find the value of numbers
Given 933 − 1073
We can write 933 − 1073 as `(100 - 7)^3 - (100 + 7)^3`
We shall use the identity `(a-b)^3 - (a+b)^3 = -2 [b^3 + 3a^2b]`
Here a=100,b =7
933 − 1073 ` = (100-7)^3 - (100+ 7)^3`
` = -2 [7^3 + 3 (7) (100)^2]`
` = -2[343 + 21 xx 10000]`
` = -2[343 + 210000]`
` = -2[210343]`
` = - 420686`
Hence the value of 933 − 1073 is -420686.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = −2 and y = 1, by using an identity find the value of the following
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Find the square of : 3a - 4b
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Expand the following:
`(4 - 1/(3x))^3`