Advertisements
Advertisements
प्रश्न
Evaluate of the following:
933 − 1073
उत्तर
In the given problem, we have to find the value of numbers
Given 933 − 1073
We can write 933 − 1073 as `(100 - 7)^3 - (100 + 7)^3`
We shall use the identity `(a-b)^3 - (a+b)^3 = -2 [b^3 + 3a^2b]`
Here a=100,b =7
933 − 1073 ` = (100-7)^3 - (100+ 7)^3`
` = -2 [7^3 + 3 (7) (100)^2]`
` = -2[343 + 21 xx 10000]`
` = -2[343 + 210000]`
` = -2[210343]`
` = - 420686`
Hence the value of 933 − 1073 is -420686.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Write in the expanded form:
(2a - 3b - c)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Expand the following:
(3a – 5b – c)2
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).