मराठी

If x + y = and xy72 and xy=52; find: x - y and x2 - y2 - Mathematics

Advertisements
Advertisements

प्रश्न

If x + y = `7/2  "and xy" =5/2`; find:  x - y and x2 - y2

बेरीज

उत्तर

We know that,

(x + y)2 = x2 + 2xy + y2

and
(x - y)2 = x2 - 2xy + y2

Rewrite the above equation, we have

(x - y)2 = x2 + y2 + 2xy - 4xy 

= (x + y)2 - 4xy              ...(1)

Given that `"x + y" = 7/2  "and xy" =5/2` 

Substitute the values of (x + y) and (xy)

in equation (1), we have

(x - y)2 =` (7/2)^2 - 4(5/2)`

= `49/4 - 10`

= `9/4`

⇒ x - y = `+- sqrt(9/4)`

⇒ a - b = `+-(3/2)`                       ...(2)

We know that,

x2 - y2 = (x + y)(x - y)             ...(3)

From equation (2) we have,

x - y = `+- 3/2`

Thus, equation (3) becomes,

x2 - y2 = `(7/2)( +- 3/2)`            ...[Given x + y = `7/2`]

⇒ x2 - y2 = `+- 21/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Expansions (Including Substitution) - Exercise 4 (A) [पृष्ठ ५८]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 4 Expansions (Including Substitution)
Exercise 4 (A) | Q 7 | पृष्ठ ५८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×