Advertisements
Advertisements
प्रश्न
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
उत्तर
In the given problem, we have to find Product of equations
Given `(2a - 3b - 2c)(4a^2 + 9b^2 + 4c^2 + 6ab - 6bc +8ca)`
We shall use the identity
`x^3 + y^3 + z^3 - 3xyz = (x+y+ z) (x^2 + y^2 + z^2 - xy - yz - zx)`
` = (2a)^3 + (3b)^3 + (2c)^3 - 3 (2a )(3b)(2c)`
` = (2a) xx(2a) xx(2a) +(-3b) xx (-3b) xx(-3b)+ ( -2c) xx ( -2c) xx ( -2c) -3 (2a)(-3b)(-2c)`
` = 8a^3 - 27b^3 - 8c^3 - 36abc`
Hence the product of `(2a - 3b - 2c)(4a^2 + 9b^2 + 4c^2 + 6ab - 6bc +8ca)` is `8a^3 - 27b^3 - 8c^3 - 36abc`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
103 × 107
Factorise the following using appropriate identity:
4y2 – 4y + 1
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise the following:
64m3 – 343n3
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Evaluate of the following:
(103)3
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`