Advertisements
Advertisements
प्रश्न
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
उत्तर
In the given problem, we have to find Product of equations
Given (3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
We shall use the identity
`x^3 + y^3 + z^3 -xyz = (x+ y +z)(x^2 + y^2+z^2 - xy - yz -zx)`
` = (3x)^3 + (-4y)^3 + (5z)^3 - 3 (3x)(4y) (5z)`
`= (3x)xx (3x)xx(3x) - (-4y) xx (-4y) xx (-4y)+(5z)xx (5z)xx(5z) -3 (3x) (-4y)(5z)`
` = 27x^3 - 64y^3 + 125z^3 + 180xyz`
Hence the product of (3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)is ` 27x^3 - 64y^3 + 125z^3 + 180xyz`
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Factorise the following:
27y3 + 125z3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Evaluate of the following:
(99)3
Evaluate of the following:
463+343
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
(a + 3b)2
Find the squares of the following:
3p - 4q2
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`