Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
उत्तर
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
We shall use the identity,`a^3 + b^3 = (a+b)(a^2 - ab + b^2)`
We can rearrange the \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\] as
` = (x/7 + y/3)[(x/7)^2 + (y/3)^2 - (x/7)(y/3)]`
` = (x/7)^3 + (y/3)^3`
` = (x/7) xx (x/7) xx (x/7) + (y/3)xx (y/3)xx (y/3)`
` = x^3/343 + y^3/27`
Now substituting the value i`x =3,y = -1`n `x^3/343 + y^3/27`
` = x^3/343 + y^3/27`
`= 3^3/343 + (-1)^3/27`
` = 27/343 - 1/27`
Taking Least common multiple, we get
` = (27 xx 27)/(343 xx 27) - (1 xx 343) / (27 xx 343)`
` = 729/9261 - 343/9261`
`= (729 - 343)/9261`
` = 386/9261`
Hence the Product value of \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]is ` = 386/9261`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If a + b = 10 and ab = 21, find the value of a3 + b3
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If a − b = −8 and ab = −12, then a3 − b3 =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Find the square of : 3a - 4b
Use identities to evaluate : (101)2
Use identities to evaluate : (97)2
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Expand the following:
(4a – b + 2c)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Find the following product:
(x2 – 1)(x4 + x2 + 1)
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4