Advertisements
Advertisements
प्रश्न
If a − b = −8 and ab = −12, then a3 − b3 =
पर्याय
−244
−240
−224
−260
उत्तर
To find the value of a3 − b3
Given `a-b = -8,ab =-12`
Using identity `(a-b)^3 = a^3 - b^3 -3ab(a-b)`
Here `a-b = -8,ab =-12`we get
`(-8)^3 = a^3 -b^3 -3ab(a-b)`
`(-8)^3 =a^3 -b^3 -3 xx -12 xx -8`
`-512 = a^3 -b^3 - 288`
Transposing -288 to left hand side we get
`- 512 + 288 = a^3 - b^3`
`-224 = a^3 - b^3`
Hence the value of `a^3 -b^3 `is -224 .
APPEARS IN
संबंधित प्रश्न
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form: `(x + 2y + 4z)^2`
Evaluate of the following:
(103)3
Simplify of the following:
If a + b = 8 and ab = 6, find the value of a3 + b3
If x = −2 and y = 1, by using an identity find the value of the following
If x = −2 and y = 1, by using an identity find the value of the following
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Expand the following:
(x - 3y - 2z)2
If x + y = 1 and xy = -12; find:
x2 - y2.
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Expand the following:
(3a – 5b – c)2
Expand the following:
`(1/x + y/3)^3`
Expand the following:
`(4 - 1/(3x))^3`