Advertisements
Advertisements
प्रश्न
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
उत्तर
We know that,
( a + b )2 = a2 + 2ab + b2
Given that `a - 1/a` = 8 ; Substitute in equation (1), we have
`(8)^2 = a^2 + 1/a^2 - 2`
⇒ `a^2 + 1/a^2 = 64 + 2`
⇒ `a^2 + 1/a^2 = 66`
⇒ `(a + 1/a)^2 = a^2 + 1/a^2 + 2`
⇒ `(a + 1/a)^2 = 66 + 2`
⇒ `(a + 1/a)^2 = 68`
i) `a + 1/a = sqrt68 `
⇒ `sqrt(17xx4 )= _-^+2sqrt17`
ii) `a^2 - 1/a^2 = (a+1/a) (a - 1/a)`
⇒ `a^2 - 1/a^2 = _-^+2sqrt17 xx 8`
⇒ `a^2 - 1/a^2 = _-^+16sqrt17`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write the following cube in expanded form:
`[3/2x+1]^3`
Factorise:
27x3 + y3 + z3 – 9xyz
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If a + b = 7 and ab = 12, find the value of a2 + b2
Use identities to evaluate : (97)2
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Which one of the following is a polynomial?