Advertisements
Advertisements
प्रश्न
If a + b = 7 and ab = 12, find the value of a2 + b2
उत्तर
We have to find the value of `a^2 +b^2`
Given `a + b = 7 ,ab = 12`
Using identity `(a+b)^2 = a^2 + 2ab +b^2`
By substituting the value of a + b = 7 ,ab = 12we get
`(a+b)^2 = a^2 +b^2 + 2 xx ab`
`(7)^2 = a^2 +b^2 + 2 xx 12`
`49 = a^2 +b^2 + 24`
By transposing +24 to left hand side we get ,
`49 - 24 = a^2 +b^2`
`25 = a^2 +b^2`
Hence the value of `a^2 +b^2 ` is 25.
APPEARS IN
संबंधित प्रश्न
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Write in the expanded form:
`(2 + x - 2y)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Simplify of the following:
(x+3)3 + (x−3)3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Find the squares of the following:
3p - 4q2
Simplify by using formula :
(x + y - 3) (x + y + 3)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(x + y - z)2 + (x - y + z)2