Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x- 1/x = 5`
We shall use the identity `(a- b)^3 = a^3 -b^3 - 3ab(a-b)`
Here putting, `x- 1/x = 5`,
`(x-1/x)^3 = x^3 -1/x^3 -3 (x xx 1/x)(x- 1/x)`
`(5)^3 = x^3 - 1/x^3 -3 (x xx 1/x) (x-1/x)`
`125 = x^3 - 1/x^3 - 3 (x - 1/x)`
`125 = x^3 -1 /x^3 - 3 xx 5 `
`125 = x^3 -1 /x^3 -15 `
`125 +15= x^3 -1 /x^3 `
`140 = x^3 -1 /x^3 `
Hence the value of `x^3 -1 /x^3 ` is 140.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Evaluate the following using identities:
(2x + y) (2x − y)
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If a + b = 8 and ab = 6, find the value of a3 + b3
Expand the following:
(a + 3b)2
Expand the following:
(2p - 3q)2
Simplify by using formula :
(5x - 9) (5x + 9)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If p + q = 8 and p - q = 4, find:
p2 + q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Expand the following:
(3a – 2b)3
Expand the following:
`(4 - 1/(3x))^3`
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`