Advertisements
Advertisements
प्रश्न
If a + b = 8 and ab = 6, find the value of a3 + b3
उत्तर
In the given problem, we have to find the value of `a^3 +b^3`
Given `a+b = 8.ab = 6`
We shall use the identity `a^3 + b^3 = (a+b)^3 ab(a+b)`
`a^3 + b^3 = (a+b)^3- 3ab (a+b)`
`a^3 +b^3 = a(8)^3 - 3 3 xx 6 (8)`
`a^3 +b^3 = 512 - 144`
`a^3+b^3 = 368`
Hence the value of i`a^3 +b^3` is 368 .
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Find the square of 2a + b.
Find the square of : 3a - 4b
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(3x + 4) (2x - 1)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If x + y = 9, xy = 20
find: x2 - y2.
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.