Advertisements
Advertisements
प्रश्न
उत्तर
Given (0.2)3 − (0.3)3 + (0.1)3
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab -bc-ca)`
Let Take a = 0.2,b=0.3 ,c=0.1
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2+b^2 +c^2 - ab-bc - ca)`
`a^3 + b^3 +c^3 = (a+b+c)(a^2+b^2 +c^2 - ab-bc - ca)+3abc`
\[a^3 + b^3 + c^3 = \left( 0 . 2 - 0 . 3 + 0 . 1 \right)\left( a^2 + b^2 + c^2 - ab - bc - ca \right) + 3abc\]
\[a^3 + b^3 + c^3 = 0 \times \left( a^2 + b^2 + c^2 - ab - bc - ca \right) + 3abc\]
`a^3+b^3+c^3 = +3abc`
`(0.2)^3 - (0.3)^3 + (0.1)^3 = 3 xx 0.2 xx 0.3 xx 0.1`
` = -0.018`
Hence the value of (0.2)3 − (0.3)3 + (0.1)3 is -0.018.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
Evaluate the following using suitable identity:
(998)3
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
(9.9)3
Evaluate of the following:
(99)3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Use identities to evaluate : (101)2
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Evaluate: (4 − ab) (8 + ab)
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: 20.8 × 19.2
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
The value of 2492 – 2482 is ______.