Advertisements
Advertisements
प्रश्न
उत्तर
Given \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca)`
Let Take `a= 1/2 , b= 1/3, c= - 5/ 6`
`a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca)`
`a^3 + b^3 + c^3 = (a+b+c) (a^2 + b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 + c^3 = (1/2 + 1/3 - 5/6)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
Applying least common multiple we get,
`a^3 + b^3 + c^3 = (1/2 + 1/3 - 5/6)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
`a^3 + b^3 + c^3 = ((1xx6)/(2xx6) + (1xx4)/(3xx 4) - 5/6)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
`a^3 + b^3 + c^3 = (6/12 + 4/12 - 10/12)(a^2 +b^2 + c^2 - ab - bc - ca)+3abc `
`a^3 + b^3 + c^3 =0 (a^2 +b^2 + c^2 - ab - bc - ca)+3abc`
`a^3 + b^3 + c^3 = +3abc`
`(1/2)^3 + (1/3)^3 - (5/6)^3 = 3 xx 1/2 xx 1/3 xx - 5/6`
` = 3 xx 1/2 xx 1/3 xx -5/6`
` = -5/12`
Hence the value of \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3\]is`-5/12`.
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Write in the expanded form:
`(a + 2b + c)^2`
Write the expanded form:
`(-3x + y + z)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
Evaluate:
483 − 303 − 183
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate the following without multiplying:
(1005)2
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).