Advertisements
Advertisements
प्रश्न
Evaluate:
483 − 303 − 183
उत्तर
Given 483 − 303 − 183
We shall use the identity `a^3 + b^3 + c^3 - 3abc = (a+b+c) (a^2 +b^2 + c^2 - ab - bc+ ca)`
Let Take a= 48 , b = 30,c =-18
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab - ab - ca)`
`a^3 + b^3 +c^3 = (a+b+c)(a^2 +b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 +c^3 - 3abc = (48+30+18)(a^2 +b^2 + c^2 - ab - ab - ca)+3abc`
`a^3 + b^3 +c^3 = 0 xx (a^2 +b^2 + c^2 - ab - ab - ca) + 3abc`
`a^3 + b^3 +c^3 = + 3abc`
`48^3 - 30^3 - 18^3 = 3xx 48 xx -30 xx -18`
= 77760
Hence the value of `25^3 - 75^3 + 50^3`is 77760.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Evaluate of the following:
(99)3
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the following product:
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
If x + y = 1 and xy = -12; find:
x - y
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Using suitable identity, evaluate the following:
9992
Factorise the following:
9y2 – 66yz + 121z2
Simplify (2x – 5y)3 – (2x + 5y)3.