Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
पर्याय
4
- \[\frac{17}{4}\]
- \[\frac{13}{4}\]
- \[\frac{1}{4}\]
उत्तर
In the given problem, we have to find the value of `x+1/x`
Given `x- 1/x = 15/4`
We shall use the identity `(a-b)^2 = a^2 +b^2 - 2ab`
Here putting`x-1/x =15/4`,
`(x-1/x)^2 = x^2 +1/x^2 -2 (x xx 1/x)`
`(15 /4)^2 = x^2 +1/x^2 -2 (x xx 1/x)`
`225/16 = x^2 +1/x^2`
`225/16 +2 = x^2 +1/x^2`
`225/16 + (2 xx 16) /(1 xx 16) = x^2 +1/x^2`
`(225+32)/16 = x^2 +1/x^2`
`257/16 = x^2 +1/x^2`
Substitute `257/16 = x^2 +1/x^2` in `(a+b)^2 = a^2 +b^2 +2ab` we get,
`(x+1/x)^2 = (x)^2 + (1/x)^2 +2 (x xx 1/x)`
`(x+1/x)^2 = (x)^2 + (1/x)^2 + 2 xx x xx 1/x`
`(x+1/x)^2 = x^2 +1/x^2 +2`
`(x+1/x)^2 = 257/16+2`
`(x+1/x)^2 = 257/16 + (2 xx 16)/(1 xx 16)`
`(x+1/x^2 )^2= (257+32)/16`
`(x+1/x)^2 = 289/16`
`(x+1/x) xx (x+1/x) = (17 xx 17)/(4 xx 4)`
`(x+1/x) = 17/4`
Hence the value of `x+1/x` is `17/4`.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Evaluate the following using suitable identity:
(99)3
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form:
`(a + 2b + c)^2`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Simplify of the following:
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
Simplify by using formula :
(2x + 3y) (2x - 3y)
If p + q = 8 and p - q = 4, find:
pq
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4