Advertisements
Advertisements
प्रश्न
Evaluate the following using suitable identity:
(99)3
उत्तर
It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a − b)3 = a3 − b3 − 3ab(a − b)
∴ (99)3 = (100 − 1)3
= (100)3 − (1)3 − 3(100)(1)(100 − 1)
= 1000000 − 1 − 300(99)
= 1000000 − 1 − 29700
= 970299
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
Evaluate the following using identities:
(2x + y) (2x − y)
Evaluate the following using identities:
`(a^2b - b^2a)^2`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Find the following product:
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate: (9 − y) (7 + y)
Evaluate: 203 × 197
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).