Advertisements
Advertisements
प्रश्न
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.
उत्तर
Given: a + b + c = 5 and ab + bc + ca = 10
We know that: a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= (a + b + c)[a2 + b2 + c2 – (ab + bc + ca)]
= 5{a2 + b2 + c2 – (ab + bc + ca)}
= 5(a2 + b2 + c2 – 10)
Given: a + b + c = 5
Now, squaring both sides, get: (a + b + c)2 = 52
a2 + b2 + c2 + 2(ab + bc + ca) = 25
a2 + b2 + c2 + 2 × 10 = 25
a2 + b2 + c2 = 25 – 20
= 5
Now, a3 + b3 + c3 – 3abc = 5(a2 + b2 + c2 – 10)
= 5 × (5 – 10)
= 5 × (–5)
= –25
Hence proved.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(x + 2y + 4z)2
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Factorise the following:
64m3 – 343n3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Evaluate of the following:
933 − 1073
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If x = −2 and y = 1, by using an identity find the value of the following
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Expand the following:
`(2"a" + 1/(2"a"))^2`
Find the squares of the following:
(2a + 3b - 4c)
Simplify by using formula :
(5x - 9) (5x + 9)
If p + q = 8 and p - q = 4, find:
pq
The coefficient of x in the expansion of (x + 3)3 is ______.
Using suitable identity, evaluate the following:
1033
Expand the following:
`(4 - 1/(3x))^3`