Advertisements
Advertisements
प्रश्न
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.
उत्तर
Given: a + b + c = 5 and ab + bc + ca = 10
We know that: a3 + b3 + c3 – 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= (a + b + c)[a2 + b2 + c2 – (ab + bc + ca)]
= 5{a2 + b2 + c2 – (ab + bc + ca)}
= 5(a2 + b2 + c2 – 10)
Given: a + b + c = 5
Now, squaring both sides, get: (a + b + c)2 = 52
a2 + b2 + c2 + 2(ab + bc + ca) = 25
a2 + b2 + c2 + 2 × 10 = 25
a2 + b2 + c2 = 25 – 20
= 5
Now, a3 + b3 + c3 – 3abc = 5(a2 + b2 + c2 – 10)
= 5 × (5 – 10)
= 5 × (–5)
= –25
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
103 × 107
Expand the following, using suitable identity:
(3a – 7b – c)2
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Evaluate of the following:
(598)3
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
Use identities to evaluate : (502)2
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Evaluate: 203 × 197
Expand the following:
(x - 3y - 2z)2
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
(2x + y)(4x2 - 2xy + y2)
The value of 2492 – 2482 is ______.