Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given `(1-x)(1 + x + x^2)`
We shall use the identity `(a-b)(a^2+ ab + b^2) = a^3 - b^3`
We can rearrange the `(1 - x) (1+ x + x^2)`as
` = (1- x) [(1)^2 + (1)(x)+ (x)^2]`
` = (1)^3 - (x)^3`
` = (1) xx (1) xx (1) - (x) xx (x) xx (x)`
` = 1=x^3`
Hence the Product value of `(1-x)(1+x + x^2)`is `1-x^3`.
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use identities to evaluate : (502)2
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Expand the following:
(3x + 4) (2x - 1)
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.