Advertisements
Advertisements
प्रश्न
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
उत्तर
We have,
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
`=> x(x^2 - 3x - 1)(x^2 - 3x + 1)`
`=>x[[x^2 - 3x]^2 - [1]^2]` `[∵ (a - b)(a +b^2) = a^2 - b^2]`
`=> x[(x^2)^2 + (-3x)^2 - 2(+3x)x^2] - 1]`
`=> x[x^4 + 9x^2 - 6x^3 - 1]`
`=> x^5 - 6x^4 + 9x^3 - x`
`∴ (x^3 - 3x^2 - 2)(x^2 - 3x + 1) = x^5 - 6x^4 + 9x^3 - x`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Evaluate the following product without multiplying directly:
95 × 96
Evaluate the following using suitable identity:
(102)3
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Write in the expanded form:
`(m + 2n - 5p)^2`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
933 − 1073
Find the following product:
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Expand the following:
(a + 4) (a + 7)
Evaluate the following without multiplying:
(999)2
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Using suitable identity, evaluate the following:
9992
Expand the following:
(3a – 5b – c)2