Advertisements
Advertisements
Question
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Solution
We have,
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
`=> x(x^2 - 3x - 1)(x^2 - 3x + 1)`
`=>x[[x^2 - 3x]^2 - [1]^2]` `[∵ (a - b)(a +b^2) = a^2 - b^2]`
`=> x[(x^2)^2 + (-3x)^2 - 2(+3x)x^2] - 1]`
`=> x[x^4 + 9x^2 - 6x^3 - 1]`
`=> x^5 - 6x^4 + 9x^3 - x`
`∴ (x^3 - 3x^2 - 2)(x^2 - 3x + 1) = x^5 - 6x^4 + 9x^3 - x`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise the following:
27 – 125a3 – 135a + 225a2
Factorise:
27x3 + y3 + z3 – 9xyz
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
If a + b = 6 and ab = 20, find the value of a3 − b3
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Using suitable identity, evaluate the following:
9992