Advertisements
Advertisements
Question
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Solution
Given, (3x + 4) (3x – 5)
Hence, using a suitable identity,
(3x + 4) (3x – 5)
= (3x + 4) [3x + (–5)]
Using the identity (x + a) (x + b) = x2 + (a + b)x + ab, we get that,
(3x)2 + [4 + (–5)]3x + [4 × (–5)]
= 9x2 + (4 – 5)3x + (–20)
= 9x2 + (–1)3x – 20
= 9x2 – 3x – 20
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(2x – y + z)2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise:
27x3 + y3 + z3 – 9xyz
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Simplify:
(2x + y)(4x2 - 2xy + y2)
Using suitable identity, evaluate the following:
101 × 102
Expand the following:
(3a – 2b)3