Advertisements
Advertisements
Question
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Solution
(1 + a) (1 - a) (1 + a2)
= [(1)2 - (a)2] (1 + a2)
= (1 - a2) (1 + a2)
(Using identify : (a + b)(a - b) = a2 - b2)
= (1)2 - (a2)2
= 1 - a4.
APPEARS IN
RELATED QUESTIONS
Write the following cube in expanded form:
(2x + 1)3
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Simplify `(a + b + c)^2 + (a - b + c)^2`
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6