Advertisements
Advertisements
Question
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Solution
Given \[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
We shall use the identity `a^3 + b^3 = (a+b) (a^2 = ab + b^2)`,
we can rearrange the `(3 + 5/x)(9 - 15/x + 25/x^2)`as
`= (3+ 5/x) [(3)^2 - (3)(5/x)+ (5/x)^2]`
` = (3)^2 + (5/x)^3`
` = (3) xx (3) xx (3) + (5/x ) xx (5/x)xx (5/x)`
` = 27 + 125/x^3`
Hence the Product value of ` (3+ 5/x)(9- 15/x + 25/x^2)`is ` 27+ 125/x^3`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Write in the expanded form (a2 + b2 + c2 )2
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Evalute : `( 7/8x + 4/5y)^2`
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(xy+4) (xy−4)
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Expand the following:
(a + 3b)2
Find the squares of the following:
3p - 4q2
Simplify by using formula :
(x + y - 3) (x + y + 3)
If p + q = 8 and p - q = 4, find:
pq
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.