Advertisements
Advertisements
Question
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Options
- 1
-1
- \[\frac{1}{2}\]
0
Solution
Given `a/b + b/a = 1`
`(a xx a)/(b xx a) +(b xx b) /(a xx b) = 1`
`a^2/(ab) +b^2/(ab) = 1`
`(a^2 +b^2 ) /(ab )= 1`
`a^2 +b^2 = 1 xx ab`
`a^2 +b^2= ab`
`a^2 +b^2 - ab = 0`
Using identity `a^3 +b^3 = (a+b)(a^2 - ab +b^2)`we get,
`a^3 +b^3 = (a+b)(a^2 - ab + b^2)`
`a^3 +b^3 = (a+b)(0)`
`a^3 +b^3 = 0`
Hence the value of `a^3 + b^3 ` is 0 .
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
104 × 96
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using suitable identity:
(99)3
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form:
`(m + 2n - 5p)^2`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Write in the expanded form: (-2x + 3y + 2z)2
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If a − b = −8 and ab = −12, then a3 − b3 =
If a1/3 + b1/3 + c1/3 = 0, then
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Expand the following:
(a + 3b)2
Expand the following:
(2p - 3q)2
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz