Advertisements
Advertisements
Question
If a − b = −8 and ab = −12, then a3 − b3 =
Options
−244
−240
−224
−260
Solution
To find the value of a3 − b3
Given `a-b = -8,ab =-12`
Using identity `(a-b)^3 = a^3 - b^3 -3ab(a-b)`
Here `a-b = -8,ab =-12`we get
`(-8)^3 = a^3 -b^3 -3ab(a-b)`
`(-8)^3 =a^3 -b^3 -3 xx -12 xx -8`
`-512 = a^3 -b^3 - 288`
Transposing -288 to left hand side we get
`- 512 + 288 = a^3 - b^3`
`-224 = a^3 - b^3`
Hence the value of `a^3 -b^3 `is -224 .
APPEARS IN
RELATED QUESTIONS
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Write in the expanded form:
`(m + 2n - 5p)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
Find the square of : 3a + 7b
Find the square of : 3a - 4b
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If x + y = 9, xy = 20
find: x2 - y2.
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If p + q = 8 and p - q = 4, find:
pq
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`