Advertisements
Advertisements
Question
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Solution
In the given problem, we have to find the value of `x^3 + 1/x^3,x^2 + 1/x^2 .x+1/x`
Given `x^4 + 1/x^4 = 194`
By adding and subtracting `2 xx x^2 xx 1/x^2`in left hand side of `x^4 + 1/x^4 = 194` we get,
`x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2 -2 xx x^2 xx 1/x^2 = 194`
`x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2 -2 xx (x^2 xx 1/x^2 )= 194`
`(x^2 xx 1/x^2 )^2 - 2= 194`
`(x^2 xx 1/x^2 )^2 - 2= 194 + 2`
`(x^2 xx 1/x^2 )^2 - 2= (14)^2`
`(x^2 xx 1/x^2 )^2 - 2= 14^2`
Again by adding and subtracting `2xx x xx1/x`in left hand side of `(x^2 + 1/x^3) = 14`we get,
`x^2 + 1/x^2 + 2xx x xx 1/x -2 xx x xx 1/x =14`
`(x+ 1/x)^2 -2 xx x xx 1/x = 14`
`(x+ 1/x)^2 -2 = 14`
`(x+ 1/x)^2 = 14+ 2`
`(x+ 1/x)^2 = 4 xx 4 `
`(x+1/x) = 4`
Now cubing on both sides of `(x+1/x) = 4` we get
`(x+1/x)^3 = 4^3`
we shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`x^3 + 1/x^3 + 3 xx x xx 1/x (x+1/x) = 4 xx 4xx 4`
`x^3 + 1/x^2 + 3 xx x xx 1/x xx 4 = 64`
`x^3 + 1/x^2 + 12 = 64`
`x^3 + 1/x^2 + 12 = 64 - 12`
`x^3 + 1/x^3 = 52`
Hence the value of `x^2 + 1/x^2 ,x^2 + 1/x^2 , x+ 1/x` is 52,14,4 respectively.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Write in the expanded form: `(x/y + y/z + z/x)^2`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate the following:
(98)3
Evaluate of the following:
(598)3
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Evaluate: (6 − 5xy) (6 + 5xy)
Expand the following:
(2p - 3q)2
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If x + y = 9, xy = 20
find: x2 - y2.
Factorise the following:
9y2 – 66yz + 121z2