Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
उत्तर
In the given problem, we have to find the value of `x^3 + 1/x^3,x^2 + 1/x^2 .x+1/x`
Given `x^4 + 1/x^4 = 194`
By adding and subtracting `2 xx x^2 xx 1/x^2`in left hand side of `x^4 + 1/x^4 = 194` we get,
`x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2 -2 xx x^2 xx 1/x^2 = 194`
`x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2 -2 xx (x^2 xx 1/x^2 )= 194`
`(x^2 xx 1/x^2 )^2 - 2= 194`
`(x^2 xx 1/x^2 )^2 - 2= 194 + 2`
`(x^2 xx 1/x^2 )^2 - 2= (14)^2`
`(x^2 xx 1/x^2 )^2 - 2= 14^2`
Again by adding and subtracting `2xx x xx1/x`in left hand side of `(x^2 + 1/x^3) = 14`we get,
`x^2 + 1/x^2 + 2xx x xx 1/x -2 xx x xx 1/x =14`
`(x+ 1/x)^2 -2 xx x xx 1/x = 14`
`(x+ 1/x)^2 -2 = 14`
`(x+ 1/x)^2 = 14+ 2`
`(x+ 1/x)^2 = 4 xx 4 `
`(x+1/x) = 4`
Now cubing on both sides of `(x+1/x) = 4` we get
`(x+1/x)^3 = 4^3`
we shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`x^3 + 1/x^3 + 3 xx x xx 1/x (x+1/x) = 4 xx 4xx 4`
`x^3 + 1/x^2 + 3 xx x xx 1/x xx 4 = 64`
`x^3 + 1/x^2 + 12 = 64`
`x^3 + 1/x^2 + 12 = 64 - 12`
`x^3 + 1/x^3 = 52`
Hence the value of `x^2 + 1/x^2 ,x^2 + 1/x^2 , x+ 1/x` is 52,14,4 respectively.
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Write the following cube in expanded form:
`[x-2/3y]^3`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form: (ab + bc + ca)2
Evaluate of the following:
933 − 1073
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
Evaluate:
253 − 753 + 503
If a − b = −8 and ab = −12, then a3 − b3 =
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Simplify by using formula :
(5x - 9) (5x + 9)
If x + y = 1 and xy = -12; find:
x - y
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Which one of the following is a polynomial?
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3