Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
पर्याय
27
25
- \[3\sqrt{3}\]
- \[- 3\sqrt{3}\]
उत्तर
In the given problem, we have to find the value of `x+1/x`
Given `x^4 + 1/x^4 = 623`
We shall use the identity `(a+b)^2 = a^2 +b^2 +2ab`
Here put`x^4 +1/x^4 = 623`,
`(x^2 +1/x^2)^2 = (x^2)^2 + 1/(x^2)^2 + 2 (x^2 xx 1/x^2)`
`(x^2 +1/x^2)^2 = x^4 + 1/x^4+ 2 (x^2 xx 1/x^2)`
`(x^2 +1/x^2)^2 = x^4+ 1/x^4+2`
`(x^2 +1/x^2)^2 = 625+2`
`(x^2 +1/x^2)^2 = 625`
`(x^2 +1/x^2) xx (x^2 +1/x^2) = 25xx25`
`(x^2 +1/x^2) = 25`
We shall use the identity `(a+b)^2 = a^2 +b^2 +2ab` we get,
`(x+1/x)^2 = x^2 +1/x^2 +2(x xx 1/x)`
`(x+1/x)^2 = 25 +2 (x xx 1/x)`
`(x+1/x)^2 = 25 +2`
`(x+1/x)^2 = 27`
Taking square root on both sides we get,
`sqrt((x+1/x) xx (x+1/x)) = sqrt(3 xx 3xx 3)`
`(x+1/x) = 3sqrt3`
Hence the value of `(x+1/x)`is `3sqrt3`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Write in the expand form: `(2x - y + z)^2`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Find the following product:
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
Find the square of 2a + b.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Evaluate the following without multiplying:
(95)2
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Expand the following:
`(4 - 1/(3x))^3`