Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
विकल्प
27
25
- \[3\sqrt{3}\]
- \[- 3\sqrt{3}\]
उत्तर
In the given problem, we have to find the value of `x+1/x`
Given `x^4 + 1/x^4 = 623`
We shall use the identity `(a+b)^2 = a^2 +b^2 +2ab`
Here put`x^4 +1/x^4 = 623`,
`(x^2 +1/x^2)^2 = (x^2)^2 + 1/(x^2)^2 + 2 (x^2 xx 1/x^2)`
`(x^2 +1/x^2)^2 = x^4 + 1/x^4+ 2 (x^2 xx 1/x^2)`
`(x^2 +1/x^2)^2 = x^4+ 1/x^4+2`
`(x^2 +1/x^2)^2 = 625+2`
`(x^2 +1/x^2)^2 = 625`
`(x^2 +1/x^2) xx (x^2 +1/x^2) = 25xx25`
`(x^2 +1/x^2) = 25`
We shall use the identity `(a+b)^2 = a^2 +b^2 +2ab` we get,
`(x+1/x)^2 = x^2 +1/x^2 +2(x xx 1/x)`
`(x+1/x)^2 = 25 +2 (x xx 1/x)`
`(x+1/x)^2 = 25 +2`
`(x+1/x)^2 = 27`
Taking square root on both sides we get,
`sqrt((x+1/x) xx (x+1/x)) = sqrt(3 xx 3xx 3)`
`(x+1/x) = 3sqrt3`
Hence the value of `(x+1/x)`is `3sqrt3`.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2x + 1)3
Write the following cube in expanded form:
(2a – 3b)3
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form:
`(a + 2b + c)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Expand the following:
(3x + 4) (2x - 1)
Find the squares of the following:
(2a + 3b - 4c)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If x + y = 1 and xy = -12; find:
x2 - y2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Factorise the following:
4x2 + 20x + 25
Simplify (2x – 5y)3 – (2x + 5y)3.