Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
उत्तर
In the given problem, we have to find `x^2 + 1/x^2`
Given `(x-1/x)=-1`
On squaring both sides we get,
`(x-1/x)^2=(-1)^2`
We shall use the identity `(x-y )^2 = x^2 - 2xy + y`
`x^2 +1/x^2 - 2 xx x xx 1/x =- 1 xx -1`
`x^2 +1/x^2 -2 =1`
`x^2 +1/x^2 = 1+2`
`x^2+1/x^2 =3`
Hence the value of ` x^2 +1/x^2`is 3 .
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Write in the expanded form: `(x + 2y + 4z)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
(598)3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: (2 − z) (15 − z)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If p + q = 8 and p - q = 4, find:
p2 + q2
If x + y = 1 and xy = -12; find:
x - y
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Simplify:
(x + y - z)2 + (x - y + z)2
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.