Advertisements
Advertisements
प्रश्न
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
उत्तर
We have
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`=> (x + 1/x)^2 = x^2 + 1/x^2 + 2`
`=> (sqrt5)^2 = x^2 + 1/x^2 + 2` [∵ `x + 1/x = sqrt5`]
`=> 5 = x^2 + 1/x^2 + 2`
`=> x^2 + 1/x^2 = 3` ......(1)
Now `(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`=> (x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2`
`=> 9 = x^2 + 1/x^4 + 2` [∵ `x^2 + 1/x^2 = 3`]
`=> x^4 + 1/x^4 = 7`
Hence `x^2 + 1/x^2 = 3; x^4 + 1/x^4 = 7`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expanded form (a2 + b2 + c2 )2
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a - b = 7 and ab = 18; find a + b.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate the following without multiplying:
(95)2
Evaluate the following without multiplying:
(1005)2
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Expand the following:
`(4 - 1/(3x))^3`
Find the following product:
(x2 – 1)(x4 + x2 + 1)
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.