Advertisements
Advertisements
प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
उत्तर
9x2 + 6xy + y2
= (3x)2 + 2(3x)(y) + (y)2
= (3x + y)2 ...[x2 + 2xy + y2 = (x + y)2]
= (3x + y)(3x + y)
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2x + 1)3
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If a − b = 4 and ab = 21, find the value of a3 −b3
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a2 + b2 + c2 − ab − bc − ca =0, then
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Evaluate: 20.8 × 19.2
Expand the following:
(x - 5) (x - 4)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a"^2 + (1)/"a"^2`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Factorise the following:
9y2 – 66yz + 121z2
Expand the following:
(3a – 5b – c)2