Advertisements
Advertisements
प्रश्न
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
उत्तर
n the given problem, we have to find value of x3 + y3 + z3 −3xyz
Given x + y + z = 8 , xy +yz +zx = 20
We shall use the identity
`(x+y+z)^2 = x^2 + y^2 + z^2 + 2 (xy + yz +za)`
`(x+y+z)^2 = x^2 + y^2 + z^2 +2 (20)`
`64 = x^2 + y^2 +z^2 + 40`
`64 - 40 = x^2 + y^2 + z^2`
`24 = x^2 + y^2 + z^2`
We know that
`x^3 + y^3 + z^3 - 3xyz = (x+y+z)(x^2 + y^2 + z^2 - xy - yz -zx)`
`x^3 + y^3 + z^3 - 3xyz = (x+y+z)[(x^2 + y^2 + z^2 )- (xy - yz -zx)]`
Here substituting `x+y +z = 8,xy +yz + zx = 20,x^2 +y^2 + z^2 = 24 ` we get
`x^3 + y^3 + z^3 -3xyz = 8 [(24 - 20)] `
` = 8 xx 4`
` =32`
Hence the value of x3 + y3 + z3 −3xyz is 32.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
Evaluate the following using identities:
`(2x+ 1/x)^2`
Evaluate the following using identities:
(2x + y) (2x − y)
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Evaluate of the following:
(9.9)3
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If a + b = 8 and ab = 6, find the value of a3 + b3
Find the square of : 3a - 4b
Evalute : `( 7/8x + 4/5y)^2`
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If p + q = 8 and p - q = 4, find:
pq
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
The value of 2492 – 2482 is ______.
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Expand the following:
(4a – b + 2c)2