Advertisements
Advertisements
प्रश्न
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
विकल्प
0
`1/sqrt(2)`
`1/4`
`1/2`
उत्तर
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is `underlinebb(1/4)`.
Explanation:
Given, `(49x^2 - b) = (7x + 1/2)(7x - 1/2)`
⇒ `[49x^2 - (sqrt(b))^2] = [(7x)^2 - (1/2)^2]` ...[Using identity, (a + b)(a – b) = a2 – b2]
⇒ `49x^2 - (sqrt(b))^2 = 49x^2 - (1/2)^2`
⇒ `-(sqrt(b))^2 = -(1/2)^2`
⇒ `(sqrt(b))^2 = (1/2)^2` ...[Multiplying both sides by –1]
∴ `b = 1/4`
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(99)3
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Write the expanded form:
`(-3x + y + z)^2`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If a + b = 7 and ab = 12, find the value of a2 + b2
If a − b = −8 and ab = −12, then a3 − b3 =
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
The product (x2−1) (x4 + x2 + 1) is equal to
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Find the squares of the following:
9m - 2n
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6