Advertisements
Advertisements
प्रश्न
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
उत्तर
In the given problem, we have to find value of a3 + b3 + c3 −3abc
Given a + b + c = 9 , a2+ b2 + c2 =35
We shall use the identity
`(a+b+c)^2 = a^2 +b^2 + c^2 + 2 (ab+bc+ ca)`
`(a+b+c)^2 =35 + 2 (ab+bc+ ca)`
`(9)^2 =35 + 2 (ab+bc+ ca)`
`81 - 35 = 2 (ab+bc+ ca)`
`46/ 2 = (ab+bc+ ca)`
`23 = (ab+bc+ ca)`
We know that
`a^3 + b^3 + c^3- 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc -ca)`
`a^3 + b^3 + c^3- 3abc = (a+b+c)[(a^2 + b^2 + c^2) - (ab + bc +ca)`
Here substituting `a+b+c = 9,a^2 +b^2 + c^2 = 35 , ab +bc + ca = 23` we get
`a^3 +b^3 + c^3 - 3abc = 9 [(35 - 23)]`
` =9 xx 12`
` = 108`
Hence the value of a3 + b3 + c3 −3abc is 108.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
463+343
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Evaluate:
253 − 753 + 503
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
(2a+3) (2a−3)
Expand the following:
(a + 3b)2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Factorise the following:
9y2 – 66yz + 121z2
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3