Advertisements
Advertisements
प्रश्न
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
उत्तर
We have to find the value of `x^2 + 1/x^2 `
Given `x+ 1/x = 3`
Using identity `(a+b)^2 = a^2 + 2ab + b^2`
Here `a= x,b= 1/x`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x + (1/x)^2`
`(x+1/x)^2 = x xx x +2 xx x xx 1/x + 1/x xx 1/x`
` (x+1/x)^2 = x^2 + 2+ 1/x^3`
By substituting the value of `x + 1/x = 3` we get,
`(3)^2 = x^2 + 2+ 1/x^2`
`3 xx 3 = x^2 + 2 +1/x^2`
By transposing + 2 to left hand side, we get
`9 -2 = x^2 +1/x^2`
`7 = x^2 + 1/x^2`
Hence the value of `x^2 + 1/x^2`is 7 .
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Evaluate following using identities:
991 ☓ 1009
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expand form: `(2x - y + z)^2`
Evaluate of the following:
1113 − 893
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Find the square of : 3a + 7b
Use identities to evaluate : (97)2
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Find the squares of the following:
3p - 4q2
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Expand the following:
(3a – 5b – c)2