Advertisements
Advertisements
प्रश्न
Evaluate following using identities:
991 ☓ 1009
उत्तर
In the given problem, we have to evaluate expressions by using identities.
The given expression is 991 x 1009
We have `(991 + 1009)/2 = 1000`
So we can express 991 and 1009 in the terms of 1000 as
991 = 1000 - 9
1009 = 1000 + 9
`991 xx 1009 = (1000 - 9)(1000 + 9)`
We shall use the identity `(x - y)(x + y) = x^2 - y^2`
Here
(x - y) = (1000 - 9)
(x + y) = (1000 + 9)
By applying in identity we get
`(1000 - 9)(1000 + 9) = (1000)^2 - (9)^2`
= 1000000 - 81
= 999919
Hence the value of 991 x 1009 is 999919
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
(a − b)3 + (b − c)3 + (c − a)3 =
Use identities to evaluate : (101)2
Use the direct method to evaluate :
(4+5x) (4−5x)
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If a - b = 10 and ab = 11; find a + b.
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.