Advertisements
Advertisements
प्रश्न
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
उत्तर
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
= (3x)2 + (2y)2 + (–4z)2 + 2(3x)(2y) + 2(2y)(–4z) + 2(–4z)(3x) ...[Using identity, (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
= (3x + 2y – 4z)2
= (3x + 2y – 4z)(3x + 2y – 4z)
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 5y – 3z)2
Write the following cube in expanded form:
(2x + 1)3
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Evaluate following using identities:
(a - 0.1) (a + 0.1)
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
(a − b)3 + (b − c)3 + (c − a)3 =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If a2 + b2 + c2 − ab − bc − ca =0, then
If a + b = 7 and ab = 10; find a - b.
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If x + y = 9, xy = 20
find: x - y
If m - n = 0.9 and mn = 0.36, find:
m + n
Find the following product:
(x2 – 1)(x4 + x2 + 1)
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`