Advertisements
Advertisements
प्रश्न
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
उत्तर
Give `(4- 1/(3x))^3`
We shall use the identity `a^3- b^3 = a^3-b^3 - 3ab(a-b)`
Here `a=4,b=1/(3x)`
By applying in identity we get
`(4- 1/(3x))^3 = (4)^3 - (1/(3x))^3 - 3(4) (1/(3x)) (4-1/(3x))`
`= 4 xx 4xx 4 - (1 xx 1xx1)/(3x xx 3x xx 3x) - 12/(3x) (4-1/(3x))`
` = 64 - 1/(27x^3) - 4/x (4- 1/(3x))`
` = 64 - 1/(27x^3) - (4/x xx 4)-(4/x xx 1/(3x))`
` = 64 - 1/27x^3 - (16/x - 4/(3x^2))`
` = 64 - 1/27x^3 - 16/x + 4/(3x^2)`
Hence cube of the binomial expression of `(4- 1/(3x))^3` is `64 - 1/(27x^3) - 16/x + 4/(3x^2).`
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Simplify (2x + p - c)2 - (2x - p + c)2
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = −2 and y = 1, by using an identity find the value of the following
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
(a − b)3 + (b − c)3 + (c − a)3 =
Find the square of 2a + b.
Find the square of : 3a + 7b
Use identities to evaluate : (998)2
If a + b = 7 and ab = 10; find a - b.
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: 20.8 × 19.2
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Using suitable identity, evaluate the following:
101 × 102
Expand the following:
(3a – 2b)3
Expand the following:
`(4 - 1/(3x))^3`