Advertisements
Advertisements
प्रश्न
Expand the following:
`(4 - 1/(3x))^3`
उत्तर
`(4 - 1/(3x))^3 = (4)^3 + (-1/(3x))^3 + 3(4)(-1/(3x))(4 - 1/(3x))` ...[Using identity, (a – b)3 = a3 – b3 + 3a(– b)(a – b)]
= `64 - 1/(27 x^3) - 4/x(4 - 1/(3x))`
= `64 - 1/(27x^3) - 16/x + 4/(3x^2)`
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[x-2/3y]^3`
Evaluate the following using suitable identity:
(102)3
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Simplify of the following:
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Find the square of 2a + b.
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Expand the following:
(a + 3b)2
Expand the following:
(2p - 3q)2
Simplify by using formula :
(x + y - 3) (x + y + 3)
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Expand the following:
`(1/x + y/3)^3`