Advertisements
Advertisements
प्रश्न
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
उत्तर
Using (a + b)2 = a2 + 2ab + b2
`("a" + 1/"a")^2`
= `"a"^2 + 2"a"(1/"a") + (1/"a")^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + 2 + (1)/"a"^2`
⇒ `("a" + 1/"a")^2 = "a"^2 + (1)/"a"^2 + 2`
⇒ `("a" + 1/"a")^2` = 14 + 2
⇒ `("a" + 1/"a")^2` = 16
⇒ `"a" + (1)/"a"` = ±4.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Simplify of the following:
If a + b = 6 and ab = 20, find the value of a3 − b3
Find the square of : 3a + 7b
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate :
(x+1) (x−1)
Find the squares of the following:
(2a + 3b - 4c)
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(x + y - z)2 + (x - y + z)2