Advertisements
Advertisements
प्रश्न
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
उत्तर
`"a" - (1)/"a" = 7` ...(1)
Squaring both sides of (1),
`("a" - 1/"a")^2` = (7)2
⇒ `"a"^2 + (1)/"a"^2 - 2` = 49
⇒ `"a"^2 + (1)/"a"^2`
= 49 + 2
= 51
Now, `("a" + 1/"a")^2`
= `"a"^2 + (1)/"a"^2 + 2`
= 51 + 2
= 53
⇒ `"a" + (1)/"a"`
= ±`sqrt(53)`
Now `"a"^2 - (1)/"a"^2`
= `("a" + 1/"a")("a" - 1/"a")`
= `(±sqrt(53)) (7)`
= ±7`sqrt(53)`
Cubing both sides of (1),
`("a" - 1/"a")^3` = (7)3
⇒ `"a"^3 - (1)/"a"^3 - 3("a" - 1/"a")` = 343
⇒ `"a"^3 - (1)/"a"^3 - 3(7)` = 343
⇒ `"a"^3 - (1)/("a"^3`
= 343 + 21
= 364.
APPEARS IN
संबंधित प्रश्न
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
Two positive numbers x and y are such that x > y. If the difference of these numbers is 5 and their product is 24, find:
(i) Sum of these numbers
(ii) Difference of their cubes
(iii) Sum of their cubes.
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Simplify:
(a + b)3 + (a - b)3
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
(p + q)(p2 – pq + q2) is equal to _____________
a3 + b3 = (a + b)3 = __________