Advertisements
Advertisements
प्रश्न
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
उत्तर
`x^2 + 1/x^2` = 23
`(x + 1/x)^2 - 2` = 23 ...[a2 + b2 = (a + b)2 − 2ab]
`(x + 1/x)^2` = 23 + 2
⇒ `(x + 1/x)^2` = 25
`x + 1/x = sqrt(25)`
`x+ 1/x` = ± 5
`x^3 + 1/x^3 = (x + 1/x)^3 - 3x xx 1/x(x + 1/x)`
When x = 5 ...[a3 + b3 = (a + b)3 – 3ab(a + b)]
= (5)3 – 3(5)
= 125 – 15
= 110
when x = – 5
`x^3 + 1/x^3` = (–5)3 – 3(–5)
= – 125 + 15
= – 110
∴ `x^3 + 1/x^3` = ± 110
APPEARS IN
संबंधित प्रश्न
Expand.
(52)3
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
Use property to evaluate : 93 - 53 - 43
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
If a ≠ 0 and `a - 1/a` = 4 ; find : `( a^3 - 1/a^3 )`
If `3x - (1)/(3x) = 9`; find the value of `27x^3 - (1)/(27x^3)`.
If p - q = -1 and pq = -12, find p3 - q3
Simplify:
(a + b)3 + (a - b)3
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`