Advertisements
Advertisements
Question
If `x^2 + 1/x^2` = 23, then find the value of `x + 1/x` and `x^3 + 1/x^3`
Solution
`x^2 + 1/x^2` = 23
`(x + 1/x)^2 - 2` = 23 ...[a2 + b2 = (a + b)2 − 2ab]
`(x + 1/x)^2` = 23 + 2
⇒ `(x + 1/x)^2` = 25
`x + 1/x = sqrt(25)`
`x+ 1/x` = ± 5
`x^3 + 1/x^3 = (x + 1/x)^3 - 3x xx 1/x(x + 1/x)`
When x = 5 ...[a3 + b3 = (a + b)3 – 3ab(a + b)]
= (5)3 – 3(5)
= 125 – 15
= 110
when x = – 5
`x^3 + 1/x^3` = (–5)3 – 3(–5)
= – 125 + 15
= – 110
∴ `x^3 + 1/x^3` = ± 110
APPEARS IN
RELATED QUESTIONS
Expand.
(101)3
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
Expand : (3x + 5y + 2z) (3x - 5y + 2z)
If 2x - 3y = 10 and xy = 16; find the value of 8x3 - 27y3.
If X ≠ 0 and X + `1/"X"` = 2 ; then show that :
`x^2 + 1/x^2 = x^3 + 1/x^3 = x^4 + 1/x^4`
Find the cube of: `4"p" - (1)/"p"`
If `x + (1)/x = 5`, find the value of `x^2 + (1)/x^2, x^3 + (1)/x^3` and `x^4 + (1)/x^4`.
If `x^2 + (1)/x^2 = 18`; find : `x^3 - (1)/x^3`
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
Expand: (41)3