Advertisements
Advertisements
प्रश्न
If a ≠ 0 and `a- 1/a` = 3 ; Find :
`a^3 - 1/a^3`
योग
उत्तर
`a- 1/a` = 3...............(Given)
Taking a cube on both sides,
`( a - 1/a )^3 = 3^3`
`a^3 - 1/a^3 - 3( a - 1/a) = 27`..............[(a - b)3 = a3 - b3 -3ab(a - b)]
`a^3 - 1/a^3 - 3 × 3 = 27..............[a- 1/a = 3]`
`a^3 - 1/a^3 - 9 = 27`
`a^3 - 1/a^3` = 27 + 9
`a^3 - 1/a^3` = 36.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Expand.
(7x + 8y)3
Expand.
(7 + m)3
Find the cube of : `2a + 1/(2a)` ( a ≠ 0 )
If a2 + `1/a^2 = 47` and a ≠ 0 find :
- `a + 1/a`
- `a^3 + 1/a^3`
Use property to evaluate : 383 + (-26)3 + (-12)3
If a ≠ 0 and `a - 1/a` = 3 ; find `a^2 + 1/a^2`
If `"m"^2 + (1)/"m"^2 = 51`; find the value of `"m"^3 - (1)/"m"^3`
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
Simplify:
(a + b)3 + (a - b)3
If `"a" + 1/"a"` = 6, then find the value of `"a"^3 + 1/"a"^3`