Advertisements
Advertisements
प्रश्न
If `"p" + (1)/"p" = 6`; find : `"p"^3 + (1)/"p"^3`
योग
उत्तर
`("p" + 1/"p")^3`
= `"p"^3 + (1)/"p"^3 + 3 ("p" + 1/"p")`
⇒ 216 = `"p"^3 + (1)/"p"^3 + 3(6)`
⇒ `"p"^3 + (1)/"p"^3`
= 216 - 18
= 198.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Simplify.
(3r − 2k)3 + (3r + 2k)3
If `( a + 1/a )^2 = 3 "and a ≠ 0; then show:" a^3 + 1/a^3 = 0`.
Find the cube of: `3"a" + (1)/(3"a")`
If `"r" - (1)/"r" = 4`; find : `"r"^3 - (1)/"r"^3`
If `"a" + (1)/"a" = "p"`; then show that `"a"^3 + (1)/"a"^3 = "p"("p"^2 - 3)`
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
Evaluate the following :
(5.45)3 + (3.55)3
Expand: `((2m)/n + n/(2m))^3`.
(p + q)(p2 – pq + q2) is equal to _____________
a3 + b3 = (a + b)3 = __________