Advertisements
Advertisements
प्रश्न
If x + 2y = 5, then show that x3 + 8y3 + 30xy = 125.
उत्तर
Given x + 2y = 5
(x + 2y)3 = 53
⇒ (x)3 + (2y) + 3(x)(2y)(x + 2y) = 53 ....[Using (a + b)3 = (a)3 + (b)3 + 3ab (a + b)]
⇒ (x)3 + (2y)3 + 6xy(x + 2y) = 125
⇒ (x)3 + (2y)3 + 6xy(5) = 125
⇒ x3 + 8y3 + 30xy = 125.
APPEARS IN
संबंधित प्रश्न
If `a^2 + 1/a^2` = 18; a ≠ 0 find :
(i) `a - 1/a`
(ii) `a^3 - 1/a^3`
If `"a" - (1)/"a" = 7`, find `"a"^2 + (1)/"a"^2 , "a"^2 - (1)/"a"^2` and `"a"^3 - (1)/"a"^3`
If `("a" + 1/"a")^2 = 3`; then show that `"a"^3 + (1)/"a"^3 = 0`
If a + b + c = 0; then show that a3 + b3 + c3 = 3abc.
If 2a - 3b = 10 and ab = 16; find the value of 8a3 - 27b3.
Simplify:
`("a" + 1/"a")^3 - ("a" - 1/"a")^3`
Find 27a3 + 64b3, if 3a + 4b = 10 and ab = 2
Expand (104)3
Find the volume of the cube whose side is (x + 1) cm
a3 + b3 = (a + b)3 = __________